

COINet: Adaptive Segmentation with Co-Interactive Network for Autonomous Driving

Jie Liu¹, Xiaoqing Guo¹, Baopu Li², Yixuan Yuan^{1†}

1 Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China 2 Baidu Research, USA † Corresponding Author

- 1 Background
- **1.1 Segmentation**
- **1.2 Unsupervised Domain Adaptation**
- **2** Motivation
- 3 Methodology
- 3.1 COINet
- **3.2 Scale-aware Distilled Decoder**
- **3.3 Co-interactive Loss**
- **4** Experiments
- **5** Conclusion

1 Background

1.1 Segmentation

1.2 Unsupervised Domain Adaptation

- **2** Motivation
- 3 Methodology
- 3.1 COINet
- **3.2 Scale-aware Distilled Decoder**
- **3.3 Co-interactive Loss**
- **4 Experiments**
- **5** Conclusion

Background: Segmentation

- One of the fundamental computer vision problems
- Assign semantic label for each pixel in the images
- Practical real-world application: autonomous driving

Background: Unsupervised Domain Adaptation

- Challenge1: When applying model to a new domain, the performance will drop
- Challenge2: The annotation is labor-intensive and expensive, especially for pixel-level label

~60 min per image

Department of

City University of Hong Kong

Electrical Engineering

Background: Unsupervised Domain Adaptation

- Given: Source data w/ annotations + Target data w/o annotations(new domain)
- Object: Transfer the knowledge to a new domain without annotations.

Source Domain Target Domain

Department of

City University of Hong Kong

Electrical Engineering

- 1 Background
- **1.1 Segmentation**
- **1.2 Unsupervised Domain Adaptation**

2 Motivation

- **3 Methodology**
- 3.1 COINet
- **3.2 Scale-aware Distilled Decoder**
- **3.3 Co-interactive Loss**
- **4 Experiments**
- **5** Conclusion

Motivation

- Ignore the interactive relationship between segmentation task and domain task.
- Not consider the semantic gap among different feature maps.

- 1 Background
- **1.1 Segmentation**
- **1.2 Unsupervised Domain Adaptation**
- **2** Motivation
- 3 Methodology
- 3.1 COINet
- **3.2 Scale-aware Distilled Decoder**
- **3.3 Co-interactive Loss**
- **4 Experiments**
- **5** Conclusion

- Feature Extractor *E*: employ DeepLabv2 to extract image feature.
- Scale-aware Distilled Decoder D: eliminate the domain gap among multi-scale feature maps and fuse them.
- Domain Prediction Branch F_D: predict the domain results
- Segmentation Branch F_c: predict the semantic results
- Co-interactive Loss L_{DSeg} and L_{SAdv}: align the feature distribution and refine the segmentation classifier decision boundary.

Methodology: Scale-aware Distilled Decoder

- Multi-scale feature maps: high level semantic information, shallow detailed texture information
- Semantic gaps among different scale feature maps
- Inter-Distilled Module (IDM): utilize the deep feature map to guide the semantic distillation of adjacent shallow feature map

- Calculate Channel affinity $A^{(i,j)} = \frac{\exp\left(\varphi(M'_k)^i \cdot \varphi(M'_{k-1})^j\right)}{\sum_{j=1}^{C_{k-1}} \exp\left(\varphi(M'_k)^i \cdot \varphi(M'_{k-1})^j\right)}$
- Distill feature map

$$\hat{M}_{k-1}=M_{k-1}^{\prime}A^{T}$$

Department of

City University of Hong Kong

Electrical Engineering

Methodology: Co-interactive Loss

 Domain promote segmentation: Enlarge the weight of source features which are regarded as target domain.

$$\mathcal{L}_{DSeg}(E,F_C) = \sum_{i=1}^{WH} -ig(1+
ho_{seg}p_i^Dig)y_i\log p_i^C$$

 Segmentation promote domain: Reduce the adversarial weight for target features with high confidence.

$$\mathcal{L}_{SAdv}(E,F_D) = \sum_{i=1}^{WH} \Biggl[- \Biggl(1 + rac{
ho_{adv}}{p_{t(i,\hat{y}_t)}^C} \Biggr) z \log p_{t(i)}^D - (1-z) \log \Bigl(1 - p_{s(i)}^D \Bigr) \Biggr]$$

- 1 Background
- **1.1 Segmentation**
- **1.2 Unsupervised Domain Adaptation**
- **2** Motivation
- **3 Methodology**
- 3.1 COINet
- **3.2 Scale-aware Distilled Decoder**
- **3.3 Co-interactive Loss**

4 Experiments

5 Conclusion

- Source Dataset
 - GTAV: 24996 images collected from computer game with pixel-level labels •
 - SYNTHIA: 9400 synthetic images with pixel-level labels
- Target Dataset
 - Cityscapes: 2975 training images and 500 validation images

GTAV

SYNTHIA

Achieve superior results comparing with other SOTA methods

Method	road	side.	build.	wall	fence	pole	light	sign	vege.	terrain	sky	person	rider	car	truck	bus	train	motor	bike	mIoU	JGain
Source only	75.8	16.8	72.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6	-
SSF-DAN (19') [17]	90.3	38.9	81.7	24.8	22.9	30.5	37.0	21.2	84.8	38.8	76.9	58.8	30.7	85.7	30.6	38.1	5.9	28.3	36.9	45.4	8.8
CrCDA (20') [29]	92.4	55.3	82.3	31.2	29.1	32.5	33.2	35.6	83.5	34.8	84.2	58.9	32.2	84.7	40.6	46.1	2.1	31.1	32.7	48.6	12.0
UIDA (20') [33]	90.6	37.1	82.6	30.1	19.1	29.5	32.4	20.6	85.7	40.5	79.7	58.7	31.1	86.3	31.5	48.3	0.0	30.2	35.8	46.3	9.7
LSE (20') [34]	90.2	40.0	83.5	31.9	26.4	32.6	38.7	37.5	81.0	34.2	84.6	61.6	33.4	82.5	32.8	45.9	6.7	29.1	30.6	47.5	10.9
WeakDA (20') [35]	91.6	47.4	84.0	30.4	28.3	31.4	37.4	35.4	83.9	38.3	83.9	61.2	28.2	83.7	28.8	41.3	8.8	24.7	46.4	48.2	11.6
BCDM (21') [30]	90.5	37.3	83.7	39.2	22.2	28.5	36.0	17.0	84.2	35.9	85.9	59.1	35.5	85.2	31.1	39.3	21.1	26.7	27.5	46.6	10.0
COINet	91.8	47.3	85.1	34.2	29.1	35.2	40.7	40.9	80.8	36.4	81.2	59.3	36.5	87.3	33.4	47.5	5.6	29.9	32.1	49.2	12.6

TABLE I: Unsupervised Adaptation Model performance from GTAV [32] to Cityscapes [7].

TABLE II: Unsupervised Adaptation Model performance from SYNTHIA [36] to Cityscapes [7].

Method	road	side.	build.	light	sign	vege.	sky	person	rider	car	bus	motor	bike	mIoU	Gain
Source only	55.6	22.6	63.8	5.8	13.4	72.9	78.4	51.3	15.1	33.6	21.2	13.9	22.9	36.2	-
CLAN (19') [16]	81.3	37.0	80.1	16.1	13.7	78.2	81.5	53.4	21.2	73.0	32.9	22.6	30.7	47.8	11.6
SSF-DAN (19') [17]	84.6	41.7	80.8	11.5	14.7	80.8	85.3	57.5	21.6	82.0	36.0	19.3	34.5	50.0	13.8
CrCDA (20') [29]	86.2	44.9	79.5	9.4	11.8	78.6	86.5	57.2	26.1	76.8	39.9	21.5	32.1	50.0	13.8
UIDA (20') [33]	84.3	37.7	79.5	9.2	8.4	80.0	84.1	57.2	23.0	78.0	38.1	20.3	36.5	48.9	12.7
LSE (20') [34]	82.9	43.1	78.1	9.1	14.4	77.0	83.5	58.1	25.9	71.9	38.0	29.4	31.2	49.4	13.2
COINet	83.1	42.3	79.2	19.8	25.7	82.1	85.6	59.2	24.5	81.3	33.7	28.3	26.8	51.6	15.4

14

- Perform well in small objects.
- Preserve high performance for well-aligned categories.

Target image

Source only

AdaptSeg

Ours

Ground Truth

- Cluster center distance measures the degree of alignment.
- Our method achieves lower distance, indicating better feature distribution alignment.
- Ablation study validates the effectiveness of each key component.

Fig. 6: Quantitative analysis for the feature alignment. We show each Cluster Center Distance of three approaches.

TABLE III: Ablation Studies of each component.

DTC	\mathcal{L}_{DSeg}	\mathcal{L}_{SAdv}	mIoU	Gain(%)
			45.5	.
\checkmark			46.9	1.4
\checkmark	\checkmark		48.2	2.7
\checkmark		\checkmark	47.7	2.2
\checkmark	\checkmark	\checkmark	49.2	3.7

- 1 Background
- **1.1 Segmentation**
- **1.2 Unsupervised Domain Adaptation**
- **2** Motivation
- **3 Methodology**
- 3.1 COINet
- **3.2 Scale-aware Distilled Decoder**
- **3.3 Co-interactive Loss**
- **4 Experiments**

5 Conclusion

Conclusion

- Propose a co-interactive network (COINet) addressing unsupervised domain adaptation problem.
- Scale-aware Distilled Decoder fuses multi-scale feature maps smoothly.
- Co-interactive loss promotes two tasks with each other.
- Comprehensive experiments demonstrate the effectiveness of these modules.

Thank you very much for your attention!