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Background: Segmentation
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§ One of the fundamental computer vision problems
§ Assign semantic label for each pixel in the images
§ Practical real-world application: autonomous driving



Background: Unsupervised Domain Adaptation
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~60 min per image

§ Challenge1: When applying model to a new domain, the performance will drop
§ Challenge2: The annotation is labor-intensive and expensive, especially for 

pixel-level label



Background: Unsupervised Domain Adaptation
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Source Domain Target Domain

w/o label Prediction

§ Given: Source data w/ annotations + Target data w/o annotations(new domain)
§ Object: Transfer the knowledge to a new domain without annotations.
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Motivation
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§ Ignore the interactive relationship between segmentation task and domain task.
§ Not consider the semantic gap among different feature maps.
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Methodology： COINet
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§ Feature Extractor 𝐸: employ DeepLabv2 to extract image feature.
§ Scale-aware Distilled Decoder 𝐷: eliminate the domain gap among multi-scale

feature maps and fuse them.
§ Domain Prediction Branch 𝐹!: predict the domain results
§ Segmentation Branch 𝐹": predict the semantic results
§ Co-interactive Loss 𝐿!#$% and 𝐿#&'(: align the feature distribution and refine the

segmentation classifier decision boundary.



Methodology： Scale-aware Distilled Decoder
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§ Multi-scale feature maps: high level semantic information, shallow detailed texture
information

§ Semantic gaps among different scale feature maps
§ Inter-Distilled Module (IDM): utilize the deep feature map to guide the semantic

distillation of adjacent shallow feature map

• Calculate Channel affinity

• Distill feature map



Methodology： Co-interactive Loss
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§ Domain promote segmentation: Enlarge the
weight of source features which are regarded as
target domain.

§ Segmentation promote domain: Reduce the
adversarial weight for target features with high
confidence.
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Experiment
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§ Source Dataset
• GTAV: 24996 images collected from computer game with pixel-level labels
• SYNTHIA: 9400 synthetic images with pixel-level labels

§ Target Dataset
• Cityscapes: 2975 training images and 500 validation images

GTAV

SYNTHIA

Cityscapes



Experiment
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§ Achieve superior results comparing with other SOTA methods



Experiment
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§ Perform well in small objects.
§ Preserve high performance for well-aligned categories.



Experiment
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§ Cluster center distance measures the degree of alignment. 
§ Our method achieves lower distance, indicating better feature distribution alignment.
§ Ablation study validates the effectiveness of each key component.
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Conclusion
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§ Propose a co-interactive network (COINet) addressing unsupervised domain 
adaptation problem.

§ Scale-aware Distilled Decoder fuses multi-scale feature maps smoothly.
§ Co-interactive loss promotes two tasks with each other.
§ Comprehensive experiments demonstrate the effectiveness of these modules.



Thank you very much
for your attention!
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